Exercice 1

Soient E et F deux espaces vectoriels de dimension finie et soit f une application linéaire de E vers F.

- 1) Montrer que Im(f) est un sous-espace vectoriel de F et Ker(f) est un sous-espace vectoriel de E
- 2) Montrer que f est injective si et seulement si $Ker(f) = \{0_E\}$.
- 3) Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E.
 - a) Montrer que $(f(e_1), f(e_2), \dots, f(e_n))$ est une famille génératrice de $\mathrm{Im}(f)$.
 - b) Montrer que f est injective si et seulement si $(f(e_1), f(e_2), \ldots, f(e_n))$ est une famille libre.
 - c) Montrer que f est un isomorphisme si et seulement si $(f(e_1), f(e_2), \ldots, f(e_n))$ est une base de F
- 4) Rappeler le théorème de la base incomplète, puis démontrer le théorème du rang : rg(f) + dim(Ker(f)) = dim(E).

Soit S un système d'équations linéaires homogène de n équations à p inconnues. On note les solutions comme des p-uplets de réels. Montrer que l'ensemble E des solutions de S est un sous-espace vectoriel de \mathbb{R}^p .

Dans chaque cas, déterminer si F est un sous-espace vectoriel de E et le cas échéant déterminer une base de F.

- 1) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3, x = 0 \text{ et } y = 0\}$
- 2) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3, x = 0 \text{ ou } y = 0\}$

3)
$$E = \mathbb{R}^4$$
, $F = \{(x, y, z, t) \in \mathbb{R}^4$,
$$\begin{cases} 2x + y + z &= 0 \\ y - z + 2t &= 0 \\ x - 3y + z - t &= 0 \end{cases}$$

4)
$$E = \mathbb{R}^4$$
, $F = \{(x, y, z, t) \in \mathbb{R}^4$,
$$\begin{cases} 3x - y + 2z + t &= 0 \\ -x + y - z &= 0 \\ 2x + z + t &= 0 \end{cases}$$

- Exercice 4

Soit n un entier naturel non nul et soit $E = \mathbb{R}_n[X]$. On considère l'ensemble $F = \{P \in E \mid P(1) = 0\}$

- 1) Montrer que F est un sous-espace vectoriel de E
- 2) Montrer que F est le noyau d'une application linéaire $\varphi: E \to \mathbb{R}$ que l'on précisera.
- 3) En déduire la dimension de F.

— Exercice 5 —

Pour chaque entier i dans $\{1, 2, 3\}$, on note $P_i(X) = (X - i)^2$. Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{R}_2[X]$.

Exercice 6 -

Soit $n \in \mathbb{N}^*$. On considère une matrice nilpotente N de $\mathcal{M}_n(\mathbb{R})$, d'indice de nilpotence $p \geq 1$, c'est à dire que $N^p = 0$ et

- 1) Justifier que $N^k \neq 0$ pour tout $k \in \{0, 1, ..., p-1\}$.
- 2) Montrer que la famille $(I, N, N^2, ..., N^{p-1})$ est libre.

Exercice 7

Pour chacune des matrices suivantes, déterminer le rang, la dimension du noyau, une base de l'image et une base du noyau.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ -1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 5 \\ 1 & 1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8 \end{pmatrix}$$

Pour chacune des matrices suivantes, déterminer l'ensemble des valeurs réelles de x pour lesquelles elle n'est **pas** inversible.

$$A = \begin{pmatrix} x & 2-x \\ x+3 & -x \end{pmatrix} \quad , \quad B = \begin{pmatrix} 0 & -2 & x \\ x & 2 & -2 \\ 1 & x & 0 \end{pmatrix} \quad , \quad C = \begin{pmatrix} 3 & 1+x & -2 \\ 1 & -1 & 2+x \\ x & -1 & 2 \end{pmatrix}$$

Exercice 9

Soit E un \mathbb{R} -espace vectoriel de dimension n et soit f un endomorphisme de E.

- 1) Montrer que $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$
- 2) Montrer que $Ker(f) \subset Ker(f^2)$.
- 3) Montrer que si $f^2 = 0_{\mathcal{L}(E)}$, alors $\operatorname{rg}(f) \leq \frac{n}{2}$.

Exercice 10

Soit $M \in \mathcal{M}_3(\mathbb{R})$ une matrice de rang 1. On note A^T la transposée d'une matrice A.

- 1) Montrer qu'il existe 6 réels a_1,a_2,a_3 et b_1,b_2,b_3 tels que $M_{i,j}=a_ib_j$ pour tout $(i,j)\in\{1,2,3\}^2$
- 2) Justifier qu'il existe deux matrices colonnes A et B tels que $M = AB^T$.
- 3) Montrer que $M^2 = \operatorname{tr}(M)M$

- Exercice 11

Soit E un espace vectoriel de dimension 3, et $f \in \mathcal{L}(E)$ telle que $f^3 = 0$ et $f^2 \neq 0$.

Montrer qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

- Exercice 12 ·

On pose
$$T = D + N$$
 où $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Déterminer une expression de T^n en fonction de D, N et n, puis en fonction seulement de n.

 \star \star \star Exercice 13 -

On dit qu'un endomorphisme f d'un \mathbb{R} -espace vectoriel E est une homothétie s'il existe un réel λ tel que $f = \lambda \cdot \mathrm{id}_E$, c'est à dire tel que : $\forall x \in E, f(x) = \lambda \cdot x$.

On dit que qu'un sous-espace vectoriel $F \subset E$ est stable par u si $u(F) \subset F$, c'est à dire si on a : $\forall x \in F$, $u(x) \in F$.

Soit E un \mathbb{R} -espace vectoriel de dimension finie et u un endomorphisme de E qui laisse stable toute droite vectorielle de E. Montrer que u est une homothétie.

Le coin des Khûbes

Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on note f_A l'application qui à tout $X \in \mathcal{M}_n(\mathbb{R})$ associe $\operatorname{tr}(AX)$.

- 1) Montrer que quel que soit $A \in \mathcal{M}_n(\mathbb{R}), f_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R}).$
- 2) Montrer que l'application suivante est un isomorphisme d'espaces vectoriels :

$$\varphi: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R})$$

$$A \longmapsto f_A$$

Soit n un entier naturel non nul et soit u l'application définie sur $\mathbb{R}_n[X]$ par u(P) = P(1-X) pour tout $P \in \mathbb{R}_n[X]$.

- 1) Montrer que u est un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Montrer que $u^2 = \mathrm{id}_{\mathbb{R}_n[X]}$.
- 3) En déduire qu'il existe $P \in \mathbb{R}_n[X]$ non nul tel que P(1-X) = P(X) ou P(1-X) = -P(X).

(ENS 2024) On considère une application φ non-constante de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} . On suppose que pour toutes matrices A et B dans $\mathcal{M}_n(\mathbb{R})$ on a :

$$\varphi(AB) = \varphi(A)\varphi(B)$$

Attention! L'application φ n'est pas supposée linéaire.

- 1) a) Soit O la matrice nulle de $\mathcal{M}_n(\mathbb{R})$. Déterminer $\varphi(O)$.
 - b) Soit I la matrice identité de $\mathcal{M}_n(\mathbb{R})$. Déterminer $\varphi(I)$.
- 2) Montrer que si une matrice A de $\mathcal{M}_n(\mathbb{R})$ est inversible, alors $\varphi(A)$ est non-nul.
- 3) a) Soient A et B deux matrice de même rang. Montrer que $\varphi(A)$ est non-nul si et seulement si $\varphi(B)$ est non-nul.
 - b) Soit A dans $\mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe $m \in \mathbb{N}$ tel que A^m est nulle. Déterminer $\varphi(A)$.
 - c) En déduire que si une matrice A vérifie $\varphi(A) \neq 0$, alors elle est inversible.

